NETLOGO CODE

;; SOCIAL MEDIA IN UK RIOTS

;; Original model by Uri Wilensky, modified by Antonio A. Casilli and Paola Tubaro on 10 August 2011.
;; Authorised by copyright notice as reported below.

;; Original model available in the Netlogo model library, downloadable at: http://ccl.northwestern.edu/netlogo/

breed [agents agent]
breed [cops cop]

globals [
 k ; factor for determining arrest probability
 threshold ; by how much must G > N to make someone rebel?
]

agents-own [
 risk-aversion ; R, fixed for the agent's lifetime, ranging from 0-1 (inclusive)
 perceived-hardship ; H, also ranging from 0-1 (inclusive)
 active? ; if true, then the agent is actively rebelling
 jail-term ; how many turns in jail remain? (if 0, the agent is not in jail)
]

patches-own [
 neighborhood ; surrounding patches within the vision radius
]

to setup
clear-all
;; set globals
set k 2.3
set threshold 0.1
ask patches [
 ;; make background a slightly dark gray
 set pcolor gray - 1
 ;; cache patch neighborhoods
 set neighborhood patches in-radius vision
]

;; create cops
create-cops round (initial-cop-density * .01 * count patches) [
 move-to one-of patches with [not any? turtles-here]
 display-cop
]

;; create agents
create-agents round (initial-agent-density * .01 * count patches) [
 move-to one-of patches with [not any? turtles-here]
 set heading 0
 set risk-aversion random-float 1.0
 set perceived-hardship random-float 1.0
 set active? false
 set jail-term 0
 display-agent
]
;; plot initial state of system
update-plots
end

to go
ask turtles [; Rule M: Move to a random site within your vision
 if (breed = agents and jail-term = 0) or breed = cops
 [move]
 ; Rule A: Determine if each agent should be active or quiet
 if breed = agents and jail-term = 0 [determine-behavior]
 ; Rule C: Cops arrest a random active agent within their radius
 if breed = cops [enforce]
]
; Jailed agents get their term reduced at the end of each clock tick
ask agents
 [if jail-term > 0 [set jail-term jail-term - 1]]
; update agent display
ask agents [display-agent]
ask cops [display-cop]
; advance clock and update plots
tick
update-plots
if ticks = 1000 [stop]
end

;; AGENT AND COP BEHAVIOR

;; This was the original model by U. Wilensky (now inactive)
;; move to an empty patch
;; move ;; turtle procedure
;; if movement? or (breed = cops) [
;; move to a patch in vision; candidate patches are
;; empty or contain only jailed agents
;; let targets neighborhood with
;; [not any? cops-here and all? agents-here [jail-term > 0]]
;; if any? targets [move-to one-of targets]
;;]
;;

;; These are the modifications introduced by A. Casilli and P. Tubaro on 10 August 2011
;; move ;; turtle procedure
;; for cops only: it is just the same as before
if else breed = cops [
 ;; move to a patch in vision; candidate patches are
 ;; empty or contain only jailed agents
 let targets neighborhood with
 [not any? cops-here and all? agents-here [jail-term > 0]]
 if any? targets [move-to one-of targets]
]
;; for agents: this has been changed
;; this introduces an asymmetry that provides an additional advantage for agents
[if movement? [
 ;; move to a patch in vision
 ;; candidate patches are empty or contain only jailed agents and
 ;; they choose among them those with highest number of active agents around
 let targets neighborhood with
 [not any? cops-here and all? agents-here [jail-term > 0]]
 if any? targets [move-to max-one-of targets [count (agents-on neighborhood) with [active?]]
]
;;;; AGENT BEHAVIOR

to determine-behavior
 set active? (grievance - risk-aversion * estimated-arrest-probability > threshold)
end

to-report grievance
 report perceived-hardship * (1 - government-legitimacy)
end

to-report estimated-arrest-probability
 let C count cops-on neighborhood
 let A 1 + count (agents-on neighborhood) with [active?]
 ;; See Information tab for a discussion of the following formula
 report 1 - exp (- k * floor (C / A))
end

;;;; COP BEHAVIOR

to enforce
 if any? (agents-on neighborhood) with [active?] [
 ;; arrest suspect
 let suspect one-of (agents-on neighborhood) with [active?]
 ask suspect [
 set active? false
 set jail-term random max-jail-term
 move-to suspect ;; move to patch of the jailed agent
]
]
end

;;;; VISUALIZATION OF AGENTS AND COPS

to display-agent ;; agent procedure
 ifelse visualization = "2D"
 [display-agent-2D]
 [display-agent-3D]
end

to display-agent-2D ;; agent procedure
 set shape "circle"
 ifelse active?
 [set color red]
 [ifelse jail-term > 0
 [set color black + 3]
 [set color scale-color green grievance 1.5 -0.5]]
end

to display-agent-3D ;; agent procedure
 set color scale-color green grievance 1.5 -0.5
 ifelse active?
 [set shape "person active"]
 [ifelse jail-term > 0
 [set color "red"]]
to display-cop
 set color cyan
 ifelse visualization = "2D"
 [set shape "triangle"]
 [set shape "person soldier"]
 end

;; PLOTTING

to update-plots
 let active-count count agents with [active?]
 let jailed-count count agents with [jail-term > 0]
 set-current-plot "Active agents"
 plot active-count
 set-current-plot "All agent types"
 set-current-plot-pen "active"
 plot active-count
 set-current-plot-pen "jailed"
 plot jailed-count
 set-current-plot-pen "quiet"
 plot count agents - active-count - jailed-count
end

;; Original model by Uri Wilensky, modified by Antonio Casilli and Paola Tubaro on 10 August 2011.
;; Authorised by copyright notice as reported below.
;; Copyright 2004 Uri Wilensky. All rights reserved.
;; Permission to use, modify or redistribute this model is hereby granted, provided that both of the following
;; requirements are followed:
;; a) this copyright notice is included.
;; b) this model will not be redistributed for profit without permission from Uri Wilensky.
;; Contact Uri Wilensky for appropriate licenses for redistribution for profit.
;; This model was created as part of the projects:
;; PARTICIPATORY SIMULATIONS: NETWORK-BASED DESIGN FOR SYSTEMS LEARNING IN
;; CLASSROOMS and/or INTEGRATED SIMULATION AND MODELING ENVIRONMENT.
;; The project gratefully acknowledges the support of the National Science Foundation (REPP & ROLE programs)
;; -- grant numbers REC #9814682 and REC-0126227.